skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neitzke, Ethan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of flashlamp annealing as a low-temperature alternative or supplement to thermal annealing is investigated. Flashlamp annealing and thermal annealing were conducted on 100 nm thick indium tin oxide (ITO) films deposited on glass to compare the properties of films under different annealing methods. The ITO samples had an average initial sheet resistance of 50 Ω/sq. After flashlamp annealing, the sheet resistance was reduced to 33 Ω/sq only, while by thermal annealing at 210 °C for 30 min, a sheet resistance of 29 Ω/sq was achieved. Using a combination of flashlamp annealing and thermal annealing at 155 °C for 5 min, a sheet resistance of 29 Ω/sq was achieved. X-ray diffraction analysis confirmed that flashlamp annealing can be used to crystallize ITO. Flashlamp annealing allows for low-temperature crystallization of ITO on a time scale of 1–3 min. Through electrical and optical characterizations, it was determined that flashlamp annealing can achieve similar electrical and optical properties as thermal annealing. Flashlamp offers the method of low-temperature annealing, which is particularly suitable for temperature sensitive substrates. 
    more » « less